Comparing K-Nearest Neighbors and Potential Energy Method in classification problem. A case study using KNN applet by E.M. Mirkes and real life benchmark data sets
نویسنده
چکیده
K-nearest neighbors (KNN) method is used in many supervised learning classification problems. Potential Energy (PE) method is also developed for classification problems based on its physical metaphor. The energy potential used in the experiments are Yukawa potential and Gaussian Potential. In this paper, I use both applet and MATLAB program with real life benchmark data to analyze the performances of KNN and PE method in classification problems. The results show that in general, KNN and PE methods have similar performance. In particular, PE with Yukawa potential has worse performance than KNN when the density of the data is higher in the distribution of the database. When the Gaussian potential is applied, the results from PE and KNN have similar behavior. The indicators used are correlation coefficients and information gain.
منابع مشابه
An Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification
The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...
متن کاملAn Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification
The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...
متن کاملClassification of Chronic Kidney Disease Patients via k-important Neighbors in High Dimensional Metabolomics Dataset
Background: Chronic kidney disease (CKD), characterized by progressive loss of renal function, is becoming a growing problem in the general population. New analytical technologies such as “omics”-based approaches, including metabolomics, provide a useful platform for biomarker discovery and improvement of CKD management. In metabolomics studies, not only prediction accuracy is ...
متن کاملA Novel Hybrid Approach for Email Spam Detection based on Scatter Search Algorithm and K-Nearest Neighbors
Because cyberspace and Internet predominate in the life of users, in addition to business opportunities and time reductions, threats like information theft, penetration into systems, etc. are included in the field of hardware and software. Security is the top priority to prevent a cyber-attack that users should initially be detecting the type of attacks because virtual environments are not moni...
متن کاملEvaluation of Fast K-nearest Neighbors Search Methods Using Real Data Sets
The problem of k-nearest neighbors (kNN) search is to find nearest k neighbors from a given data set for a query point. To speed up the finding process of nearest k neighbors, many fast kNN search algorithms were proposed. The performance of fast kNN search algorithms is highly influenced by the number of dimensions, number of data points, and data distribution of a data set. In the extreme cas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1211.0879 شماره
صفحات -
تاریخ انتشار 2012